Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.988
Filtrar
1.
Biochem Pharmacol ; 219: 115960, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049008

RESUMO

Prostate cancer is the most common malignant tumor among men worldwide. Currently, the main treatments are radical prostatectomy, radiotherapy, chemotherapy, and endocrine therapy. However, most of them are poorly effective and induce side effects. Polo-like kinase 1 (PLK1) regulates cell cycle and mitosis. Its inhibitor BI2536 promotes the therapeutic effect of nilotinib in chronic myeloid leukemia, enhances the sensitivity of neural tube cell tumors to radiation therapy and PLK1 silencing enhances the sensitivity of squamous cell carcinoma to cisplatin. Therefore, the aim of this study was to evaluate the effect of the PLK1 inhibitor L-shaped ortho-quinone analog TE6 on prostate cancer. In vitro on prostate cancer cells showed that TE6 inhibited PLK1 protein expression and consequently cell proliferation by blocking the cell cycle at G2 phase. In vivo on a subcutaneous tumor model in nude mice confirmed that TE6 effectively inhibited tumor growth in nude mice, inhibited PLK1 expression and regulated the expression of cell cycle proteins such as p21, p53, CDK1, Cdc25C, and cyclinB1. Thus, PLK1 was identified as the target protein of TE6, these results reveal the critical role of PLK1 in the growth and survival of prostate cancer and point out the ability of TE6 on targeting PLK1, being a potential drug for prostate cancer therapy.


Assuntos
Fase G2 , Neoplasias da Próstata , Quinonas , /antagonistas & inibidores , Quinonas/química , Quinonas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Fase G2/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Humanos , Animais , Camundongos , Masculino , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Estrutura Molecular
2.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011730

RESUMO

Anthraquinone derivatives exhibit various biological activities, e.g., antifungal, antibacterial and in vitro antiviral activities. They are naturally produced in many fungal and plant families such as Rhamnaceae or Fabaceae. Furthermore, they were found to have anticancer activity, exemplified by mitoxantrone and pixantrone, and many are well known redox-active compounds. In this study, various nature inspired synthetic anthraquinone derivatives were tested against colon, prostate, liver and cervical cancer cell lines. Most of the compounds exhibit anticancer effects against all cell lines, therefore the compounds were further studied to determine their IC50-values. Of these compounds, 1,4-bis(benzyloxy)-2,3-bis(hydroxymethyl)anthracene-9,10-dione (4) exhibited the highest cytotoxicity against PC3 cells and was chosen for a deeper look into its mechanism of action. Based on flow cytometry, the compound was proven to induce apoptosis through the activation of caspases and to demolish the ROS/RNS and NO equilibrium in the PC3 cell line. It trapped cells in the G2/M phase. Western blotting was performed for several proteins related to the effects observed. Compound 4 enhanced the production of PARP and caspase-3. Moreover, it activated the conversion of LC3A/B-I to LC3A/B-II showing that also autophagy plays a role in its mechanism of action, and it caused the phosphorylation of p70 s6 kinase.


Assuntos
Antraquinonas/química , Antraquinonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases/metabolismo , Emodina/química , Emodina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Mitose/efeitos dos fármacos
3.
Oncol Rep ; 47(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088891

RESUMO

Apigenin is a flavonoid widely presented in fruits and vegetables, and is known to possess anti­inflammatory, antioxidant, and anticancer properties. The present study was designed to investigate the effects of apigenin on renal cell carcinoma (RCC) cells. These effects on cell growth were evaluated using a cell counting kit, while cell cycle distribution was investigated by flow cytometry following propidium iodide DNA staining. The human RCC cell lines, Caki­1, ACHN, and NC65, were each treated with 1­100 µM apigenin for 24 h, which resulted in concentration­dependent cell growth inhibition, with the effects confirmed by trypan blue staining. Furthermore, even when the apigenin treatment period was shortened to 3 h, the same cytostatic effect on RCC cells was noted. Similarly, a concentration­dependent cell growth inhibitory effect was also observed in primary RCC cells, as apigenin induced G2/M phase cell cycle arrest and reduced the expression levels of cyclin A, B1, D3, and E in RCC cells in both dose­ and time­dependent manners. These findings suggest the possibility of the use of apigenin as a novel therapeutic strategy for treatment of RCC due to its anticancer activity and ability to function as a cell cycle modulating agent.


Assuntos
Apigenina/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos
4.
Cells ; 11(2)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053421

RESUMO

Recurrence in hepatocellular carcinoma (HCC) after conventional treatments is a crucial challenge. Despite the promising progress in advanced targeted therapies, HCC is the fourth leading cause of cancer death worldwide. Radionuclide therapy can potentially be a practical targeted approach to address this concern. Rhenium-188 (188Re) is a ß-emitting radionuclide used in the clinic to induce apoptosis and inhibit cell proliferation. Although adherent cell cultures are efficient and reliable, appropriate cell-cell and cell-extracellular matrix (ECM) contact is still lacking. Thus, we herein aimed to assess 188Re as a potential therapeutic component for HCC in 2D and 3D models. The death rate in treated Huh7 and HepG2 lines was significantly higher than in untreated control groups using viability assay. After treatment with 188ReO4, Annexin/PI data indicated considerable apoptosis induction in HepG2 cells after 48 h but not Huh7 cells. Quantitative RT-PCR and western blotting data also showed increased apoptosis in response to 188ReO4 treatment. In Huh7 cells, exposure to an effective dose of 188ReO4 led to cell cycle arrest in the G2 phase. Moreover, colony formation assay confirmed post-exposure growth suppression in Huh7 and HepG2 cells. Then, the immunostaining displayed proliferation inhibition in the 188ReO4-treated cells on 3D scaffolds of liver ECM. The PI3-AKT signaling pathway was activated in 3D culture but not in 2D culture. In nude mice, Huh7 cells treated with an effective dose of 188ReO4 lost their tumor formation ability compared to the control group. These findings suggest that 188ReO4 can be a potential new therapeutic agent against HCC through induction of apoptosis and cell cycle arrest and inhibition of tumor formation. This approach can be effectively combined with antibodies and peptides for more selective and personalized therapy.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Radioisótopos/farmacologia , Rênio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Camundongos Nus , Mitose/efeitos dos fármacos , Fenótipo , Tolerância a Radiação/efeitos dos fármacos
5.
FASEB J ; 35(10): e21923, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34551143

RESUMO

Our recent studies have shown that haspin, a protein kinase imperative for mitosis, is engaged in the interphase progression of HeLa and U2OS cancer cells. In this investigation, we employed the Fucci reporter system and time-lapse imaging to examine the impact of haspin gene silencing on cell cycle progressions at a single-cell level. We found that the loss of haspin induced multiple cell cycle defects. Specifically, the S/G2 duration was greatly prolonged by haspin gene depletion or inhibition in synchronous HeLa cells. Haspin gene depletion in asynchronous HeLa and U2OS cells led to a similarly protracted S/G2 phase, followed by mitotic cell death or postmitotic G1 arrest. In addition, haspin deficiency resulted in robust induction of the p21CIP1/WAF1 checkpoint protein, a target of the p53 activation. Also, co-depleting haspin with either p21 or p53 could rescue U2OS cells from postmitotic G1 arrest and partially restore their proliferation. These results substantiate the haspin's capacity to regulate interphase and mitotic progression, offering a broader antiproliferative potential of haspin loss in cancer cells.


Assuntos
Ciclo Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/deficiência , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Corantes Fluorescentes , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Interfase/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose/efeitos dos fármacos , Neoplasias/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Fase S/efeitos dos fármacos , Tubercidina/análogos & derivados , Tubercidina/farmacologia , Proteína Supressora de Tumor p53/genética , Ubiquitinação , Regulação para Cima/efeitos dos fármacos
6.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443472

RESUMO

Feruloylacetone (FER) is a natural degradant of curcumin after heating, which structurally reserves some functional groups of curcumin. It is not as widely discussed as its original counterpart has been previously; and in this study, its anticancer efficacy is investigated. This study focuses on the suppressive effect of FER on colon cancer, as the efficacious effect of curcumin on this typical cancer type has been well evidenced. In addition, demethoxy-feruloylacetone (DFER) was applied to compare the effect that might be brought on by the structural differences of the methoxy group. It was revealed that both FER and DFER inhibited the proliferation of HCT116 cells, possibly via suppression of the phosphorylated mTOR/STAT3 pathway. Notably, FER could significantly repress both the STAT3 phosphorylation and protein levels. Furthermore, both samples showed capability of arresting HCT116 cells at the G2/M phase via the activation of p53/p21 and the upregulation of cyclin-B. In addition, ROS elevation and changes in mitochondrial membrane potential were revealed, as indicated by p-atm elevation. The apoptotic rate rose to 36.9 and 32.2% after being treated by FER and DFER, respectively. In summary, both compounds exhibited an anticancer effect, and FER showed a greater proapoptotic effect, possibly due to the presence of the methoxy group on the aromatic ring.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Curcumina/farmacologia , Mitocôndrias/efeitos dos fármacos , Estirenos/farmacologia , Antineoplásicos/química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Curcumina/química , Curcumina/metabolismo , Ciclina B1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Fase G2/efeitos dos fármacos , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenol/química , Fenol/farmacologia , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Estirenos/química , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/agonistas
7.
Cells ; 10(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804833

RESUMO

Exploring mechanisms of drug resistance to targeted small molecule drugs is critical for an extended clinical benefit in the treatment of non-small cell lung cancer (NSCLC) patients carrying activating epidermal growth factor receptor (EGFR) mutations. Here, we identified constitutive cell proliferation regulating inhibitor of protein phosphatase 2A (CIP2A) in the HCC4006rErlo0.5 NSCLC cell line adapted to erlotinib as a model of acquired drug resistance. Constitutive CIP2A resulted in a constitutive activation of Akt signaling. The proteasome inhibitor bortezomib was able to reduce CIP2A levels, which resulted in an activation of protein phosphatase 2A and deactivation of Akt. Combination experiments with erlotinib and bortezomib revealed a lack of interaction between the two drugs. However, the effect size of bortezomib was higher in HCC4006rErlo0.5, compared to the erlotinib-sensitive HCC4006 cells, as indicated by an increase in Emax (0.911 (95%CI 0.867-0.954) vs. 0.585 (95%CI 0.568-0.622), respectively) and decrease in EC50 (52.4 µM (95%CI 46.1-58.8 µM) vs. 73.0 µM (95%CI 60.4-111 µM), respectively) in the concentration-effect model, an earlier onset of cell death induction, and a reduced colony surviving fraction (0.38 ± 0.18 vs. 0.95 ± 0.25, respectively, n = 3, p < 0.05). Therefore, modulation of CIP2A with bortezomib could be an interesting approach to overcome drug resistance to erlotinib treatment in NSCLC.


Assuntos
Autoantígenos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Bortezomib/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Mitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Sci Rep ; 11(1): 7062, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782460

RESUMO

Camel milk has been gaining immmense importance due to high nutritious value and medicinal properties. Peptides from milk proteins is gaining popularity in various therapeutics including human cancer. The study was aimed to investigate the anti-cancerous and anti-inflammatory properties of camel whey protein hydrolysates (CWPHs). CWPHs were generated at three temperatures (30 â„ƒ, 37 â„ƒ, and 45 â„ƒ), two hydrolysis timepoints (120 and 360 min) and with three different enzyme concentrations (0.5, 1 and 2 %). CWPHs demonstrated an increase in anti-inflammatory effect between 732.50 (P-6.1) and 3779.16 (P-2.1) µg Dicolfenac Sodium Equivalent (DSE)/mg protein. CWPHs (P-4.3 & 5.2) inhibited growth of human colon carcinoma cells (HCT116) with an IC50 value of 231 and 221 µg/ml, respectively. P-4.3 induced G2/M cell cycle arrest and modulated the expression of Cdk1, p-Cdk1, Cyclin B1, p-histone H3, p21 and p53. Docking of two peptides (AHLEQVLLR and ALPNIDPPTVER) from CWPHs (P-4.3) identified Polo like kinase 1 as a potential target, which strongly supports our in vitro data and provides an encouraging insight into developing a novel peptide-based anticancer formulation. These results suggest that the active component, CWPHs (P-4.3), can be further studied and modeled to form a small molecule anti-cancerous therapy.


Assuntos
Divisão Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Fase G2/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Animais , Camelus , Humanos
9.
Cancer Chemother Pharmacol ; 87(6): 827-842, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33688998

RESUMO

PURPOSE: Glioblastoma multiforme (GBM) is one of the most aggressive human cancers. The c-MET receptor tyrosine kinase (RTK) which is frequently deregulated in GBM is considered as a promising target for GBM treatment. The c-MET plays a key role in cell proliferation, cell cycle progression, invasion, angiogenesis, and metastasis. Here, we investigated the anti-tumour activity of foretinib, a c-MET inhibitor, on three human GBM cells (T98G, U87MG and U251). METHODS: Anti-proliferative effect of foretinib was determined using MTT, crystal violet staining, and clonogenic assays. PI and Annexin V/PI staining flow cytometry were used to evaluate the effects of foretinib on cell cycle and apoptosis, respectively. Scratch assay, qRT-PCR, western blot, and zymography analyses were applied to elucidate the molecular mechanisms underlying the anti-tumour activity of foretinib. RESULTS: Foretinib treatment reduced phosphorylation of c-MET on T98G and U251 cells, but not in U87MG cells. The highest inhibitory effect was observed in T98G cells (IC50 = 4.66 ± 0.29 µM) and the lowest one in U87MG cells (IC50 = 29.99 ± 1.31 µM). The results showed that foretinib inhibited the proliferation of GBM cells through a G2/M cell cycle arrest and mitochondrial-mediated apoptosis in association with alternation in expression of the related genes and protein-regulated G2/M phase and apoptosis. Foretinib diminished GBM cell invasion through downregulation of the proteolytic cascade of MMP2, uPA and uPAR and epithelial-mesenchymal transition (EMT)-related genes. A different GBM cell sensitivity pattern was noticeable in all experiments which demonstrated T98G as a sensitive and U87MG as a resistant phenotype to foretinib treatment. CONCLUSION: The results indicated that foretinib might have the therapeutic potential against human GBM which deserve further investigation.


Assuntos
Anilidas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/metabolismo , Quinolinas/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Med Chem ; 64(3): 1701-1712, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33529017

RESUMO

Glutathione transferase (GST P1-1) is a potential target for anticancer drugs. In this work, a series of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) derivatives as GST P1-1 inhibitors were designed, synthesized, and evaluated for their biological activity. Among the target compounds, 4n showed more selective inhibition toward GST P1-1 and GST M2-2, better water solubility, and more potent anticancer activities toward all the tested cancer cells (except for HOS) than its parent molecule. Detailed biological studies on the effect of 4n toward 143b cells revealed that 4n could arrest the cell cycle at the G2 phase and induced cell apoptosis in a dose-dependent manner. Like NBDHEX, 4n displayed good pharmacokinetic characteristics. An in vivo study on 143b xenograft models demonstrated that 4n could significantly reduce tumor growth in a dose-dependent manner, showing stronger antitumor activity than NBDHEX. Thus, 4n deserves to be further investigated as a potential antitumor agent for cancer therapy.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Oxidiazóis/química , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Fase G2/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Solubilidade , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Molecules ; 26(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503939

RESUMO

Microtubules are known as the most attractive molecular targets for anti-cancer drugs. However, the number of serious limitations of the microtubule targeting agents (MTAs) including poor bioavailability, adverse effects (e.g., systemic and neural toxicity), and acquired resistance after initiation of MTA-based therapy remain the driving forces to develop the novel therapeutic agents effectively targeting microtubules and exhibiting potent anti-tumor activities. Here, we report the discovery of 2-amino-pyrrole-carboxamides (2-APCAs), a novel class of MTA, which effectively inhibited the growth of the broad spectrum of cancer cell lines in vitro, including various types of breast, prostate, and non-small lung cancer (NSLC), soft tissue sarcomas (STS) (e.g., leio-, rhabdomyo-, and fibrosarcomas), osteosarcomas and gastrointestinal stromal tumors (GISTs). Importantly, 2-APCAs were also effective in cancer cell lines exhibiting resistance to certain chemotherapeutic agents, including MTAs and topoisomerase II inhibitors. The anti-proliferative effect of 2-APCAs was due to their ability to interfere with the polymerization of tubulin and thereby leading to the accumulation of tumor cells in the M-phase. As an outcome of the mitotic arrest, cancer cells underwent apoptotic cell death which was evidenced by increased expression of cleaved forms of the poly-ADP-ribose polymerase (PARP) and caspase-3 and the increased numbers of Annexin V-positive cells, as well. Among the compounds exhibiting the potent anti-cancer activities against the various cancer cell lines indicated above, 2-APCA-III was found the most active. Importantly, its cytotoxic activities correlated with its highest potency to interfere with the dynamics of tubulin polymerization and inducement of cell cycle arrest in the G2/M phase. Interestingly, the cytotoxic and tubulin polymerization activities of 2-APCAs correlated with the stability of the «tubulin-2-АРСА¼ complexes, illustrating the "tubulin-2-APCA-III" complex as the most stable. Molecular docking showed that the binding site for 2-АРСА-III is located in α tubulin by forming a hydrogen bond with Leu23. Of note, single-cell electrophoresis (Comet assay) data illustrated the low genotoxic activities of 2-APCAs when compared to certain anti-cancer chemotherapeutic agents. Taken together, our study describes the novel MTAs with potent anti-proliferative and pro-apoptotic activities, thereby illustrating them as a scaffold for the development of successful chemotherapeutic anti-cancer agent targeting microtubules.


Assuntos
Antineoplásicos/farmacologia , Microtúbulos/metabolismo , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Células MCF-7 , Mitose/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , Tubulina (Proteína)/metabolismo
12.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445675

RESUMO

Mycotoxins are present in everyday diet as common food and feed pollutants. A part of them is still concerned as so-called emerging mycotoxins. Due to the lack of toxicity data, the safety limits and detail molecular mechanism have been not established yet for all of them. Alternariol (AOH), as one of these mycotoxins, produced by Alternaria species, is so far reported as an estrogenic, genotoxic, and immunomodulatory agent; however, its direct effect on human health is not known. Especially, in the case of hormone-dependent tissues which are sensitive to both endogenic, as well as external estrogenic agents, it might be crucial to assess the effect of AOH. Thus, this study evaluated how exposure to AOH affects viability and motility of the human normal mammary gland epithelial in vitro model. We observed that AOH significantly affects viability of cells in a time- and dose-dependent manner. Moreover, the induction of oxidative stress, DNA damage, and cell cycle arrest in the G2/M cell cycle phase was observed. The motility of 184A1 cells was also significantly affected. On the molecular level, AOH induced antioxidative stress response via activation of Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway agents, as well as decrease in the phosphorylation of protein kinase B (Akt) and p44/42 (ERK 1-2) molecules, indicating that AOH might affect crucial signaling pathways in both physiological and pathophysiological processes in breast tissue.


Assuntos
Mama/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Lactonas/farmacologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Micotoxinas/farmacologia , Alternaria/metabolismo , Mama/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fase G2/efeitos dos fármacos , Humanos , Glândulas Mamárias Humanas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Life Sci ; 269: 119028, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444618

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the second most common cancer-related death in the world. No effective curative option exists for the treatment of HCC. The available drugs exhibit severe toxic effects and low therapeutic index. AIM: This work aimed to examine different monocationic arylthiophene derivatives for possible use as chemotherapeutic agents against HCC. METHODS: The IC50 values for the compounds were determined. The mechanism of cytotoxicity was further investigated using different methods. RESULTS: Compound 2j proved to retain the highest cytotoxicity in comparison to as a positive control. The selectivity index of compound 2j revealed the safety to normal cells. Moreover, compound 2j was able to inhibit HepG2 cells´ migration and division. The anticancer effect of compound 2j was found to be partially via cell cycle arrest, activation of the tumour suppressor p53 protein, and induction of apoptosis via both intrinsic and extrinsic pathways. Compound 2j has a potential sensitization activity and significantly reduced the IC50 values for the anticancer drugs doxorubicin, cisplatin, and taxol. CONCLUSION: The tested arylthiophenes showed a potent cytotoxicity against HepG2 cells and were safe to normal cells. The most active compound 2j was found to be able to inhibit cell division and migration and also to induce apoptosis. Compound 2j also proved to have a sensitization effect on standard anticancer drugs.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Tiofenos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Caspases/metabolismo , Cátions , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Relação Estrutura-Atividade , Tiofenos/química , Tiofenos/farmacologia , Ensaio Tumoral de Célula-Tronco , Cicatrização/efeitos dos fármacos
14.
Biochem Pharmacol ; 184: 114403, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388284

RESUMO

Chlorpromazine (CPZ), an FDA-approved phenothiazine derivative used to treat schizophrenia and other psychiatric disorders, has been demonstrated to have potential anti-tumor effects. However, the potential effects of CPZ on human oral cancer cells and the underlying molecular mechanisms remain unknown. In this study, treatment of human oral cancer cells with CPZ inhibited their proliferation and induced G2/M phase arrest. Treatment with CPZ induced apoptosis through the extrinsic death receptor and the intrinsic mitochondrial pathways. In addition, the induction of autophagy was observed by the formation of autophagosomes, the expression of autophagy-related proteins and activation of the PI3K/Akt/mTOR/p70S6K pathway. The CPZ-induced cell death was reversed by the pan-caspase inhibitor Z-VAD-FMK, by the autophagy inhibitor 3-MA and by the knockdown of LC3B using a shRNA (shLC3B), suggesting that autophagy promoted CPZ-induced apoptosis. Finally, CPZ significantly suppressed tumor growth in both a zebrafish oral cancer xenotransplantation model and in a murine model of 4-nitroquinoline-1-oxide (4NQO)-induced oral cancer. Overall, this evidence demonstrated that CPZ is a novel promising strategy for the treatment of oral cancer.


Assuntos
Autofagia/efeitos dos fármacos , Clorpromazina/farmacologia , Neoplasias Bucais/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antipsicóticos/farmacologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/fisiologia , Fase G2/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra
15.
J Ethnopharmacol ; 269: 113686, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33309918

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Menispermaceae plant Tiliacora racemosa is immensely popular in Indian traditional Ayurvedic medicine as "Krishnavetra" for its remarkable anti-cancerous property, and is commonly used by tribal population for the treatment of skin infections, snake bites and filariasis. AIM OF THE STUDY: This present study intends to identify the modus operandi behind the cytotoxic activity of Tiliacora racemosa leaves in cervical cancer cells SiHa. Focus has been instilled in the ability of the plant extract to target multiple signaling pathways leading to cell cycle arrest and cell death in SiHa cells, followed by a pharmacological characterization to identify the bioactive principle. MATERIALS AND METHODS: T. racemosa leaves extracted in methanol, ethyl acetate, hexane and aqueous solvent were screened for cytotoxicity in HeLa, SiHa, C33A (cervical cancer cells) and HEK cells by MTT assay. SiHa cells were treated with the most potent extract (TRM). Cellular morphology, clonogenic and wound healing potential, presence of intracellular ROS and NO, lipid peroxidation, activity of cellular antioxidants (SOD, CAT, GSH), DNA damage detection by comet assay and localisation of γ-H2AX foci, intracellular expression of PARP-1, Bax/Bcl2 and caspase-3, loss in mitochondrial membrane potential by JC1 (flow cytometry) and Rh123 (microscopy), cell cycle analysis, Annexin-FITC assay, AO/EtBr microscopy and apoptotic proteome profiling were undertaken in the treated cells. All the related proteins were studied by immunoblots. Effect of NAC (ROS-scavenger) on cell viability, DNA damage and apoptosis were studied. Phytochemical characterization of all TR extracts was followed by LC-MS analysis of TRM and isolated alkaloid of TR was assessed for cytotoxicity. RESULTS: The methanol extract of T. racemosa (TRM) rich in bisbenzylisoquinoline and other alkaloids impeded the proliferation of cervical cancer cells SiHa in vitro through disruption of cellular redox homeostasis caused by increase in cellular ROS and NO with concomitant decrease in the cellular antioxidants. Double-stranded DNA damage was noted from γH2AX foci accumulation and Parp-1 activation leading to ATM-Chk2-p53 pathway arresting the cells at G2/M-phase through cyclin B1 inhibition. The mitochondrial membrane potential was also disturbed leading to caspase-3 dependent apoptotic induction by both extrinsic and intrinsic pathway. Immunoblots show TRM also inhibited PI3K/Akt and NFκB pathway. NAC pre-treatment rescued the cell viability proving DNA damage and apoptosis to be direct consequences of ROS overproduction. Lastly, the therapeutic potential of T. racemosa is was hypothesized to be possibly derived from its alkaloid content. CONCLUSION: This study proves the age old ethnnopharmacological anticancer role of T. racemosa. The leaf extracts inhibited the anomalous proliferation of SiHa cells by virtue of G2/M-phase cell cycle arrest and apoptotic cell death. Oxidative stress mediated double stranded DNA damage paved the way towards apoptotic cell death through multiple routes, including PI3K/Akt/NFκB pathway. The abundant alkaloid content of T. racemosa was denoted as the probable responsible cytotoxic principle.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Divisão Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Menispermaceae , Estresse Oxidativo/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Divisão Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Feminino , Fase G2/fisiologia , Células HEK293 , Células HeLa , Humanos , Estresse Oxidativo/fisiologia , Folhas de Planta , Neoplasias do Colo do Útero/tratamento farmacológico
16.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008638

RESUMO

Rigosertib is multi-kinase inhibitor that could represent an interesting therapeutic option for non-resectable patients with cholangiocarcinoma, a very aggressive hepatic cancer with limited effective treatments. The Western blotting technique was used to evaluate alterations in the expression of proteins involved in the regulation of the cell cycle of cholangiocarcinoma EGI-1 cells. Our results show an increase in EMI1 and Cyclin B protein levels after Rigosertib treatment. Moreover, the phosphorylation of CDK1 is significantly reduced by Rigosertib, while PLK1 expression increased after 24 h of treatment and decreased after 48 h. Finally, we evaluated the role of p53. Its levels increase after Rig treatment, and, as shown in the cell viability experiment with the p53 inhibitor Pifithrin, its activity is necessary for the effects of Rigosertib against the cell viability of EGI-1 cells. In conclusion, we hypothesized the mechanism of the action of Rigosertib against cholangiocarcinoma EGI-1 cells, highlighting the importance of proteins involved in the regulation of cell cycles. The CDK1-Cyclin B complex and p53 play an important role, explaining the Block in the G2/M phase of the cell cycle and the effect on cell viability.


Assuntos
Divisão Celular/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Fase G2/efeitos dos fármacos , Glicina/análogos & derivados , Sulfonas/farmacologia , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Ciclina B/metabolismo , Glicina/farmacologia , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
17.
Mol Divers ; 25(1): 223-232, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32067134

RESUMO

Synthesis of bioactive heterocyclic compounds having effective biological activity is an essential research area for wide-ranging applications. In this study, a conventional methodology has been developed for the synthesis of a series of new 3-mercapto-1,2,4-triazole derivatives 4a-f. The purity and structure of the synthesized molecules were confirmed by 1H NMR, 13C NMR and elemental analysis. In addition, the prepared compounds were screened for their anti-proliferative activity against three human cancer cell lines including A549 (lung cancer), MCF7 (breast cancer) and SKOV3 (ovarian cancer) using MTT reduction assay. All the tested compounds demonstrated remarkable cytotoxic activity with IC50 values ranging from 3.02 to 15.37 µM. The heterocyclic compound bearing 3,4,5-trimethoxy moiety was found to be the most effective among the series displaying an IC50 of 3.02 µM specifically against the ovarian carcinoma cancer cell line (SKOV3). Moreover, Annexin V-FITC/propidium iodide staining assay indicated that this compound can induce apoptosis in SKOV3 cells. Furthermore, cell cycle assay showed a significant cell cycle arrest at the G2/M phase in a dose-dependent manner for this compound. The molecular docking results was showed binding modes of potent compound 4d perfectly corroborated the suggestion of binding to the colchicine site. The entire results conclude that 3-mercapto-1,2,4-triazole derivatives can be synthesized by a green method for biological and pharmacological applications. New analogs of 3-mercapto-1,2,4-triazole potential derivatives for anti-proliferative activity were synthesized. Cytotoxic activity of all synthesized compounds was evaluated against tree human cancer cell lines: lung (A549), breast (MCF7) and ovarian (SKOV3).


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Células A549 , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Fase G2/efeitos dos fármacos , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade
18.
Bioprocess Biosyst Eng ; 44(1): 151-159, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32860147

RESUMO

Isosteviol, a prodrug used to be obtained via Wagner-Meerwein rearrangement from steviol with low yield and long reaction time. Herein, an in-situ separation-coupling-reaction is presented to prepare isosteviol from the natural sweetener stevioside. Simply with in-situ water-washing, the product containing 92.98% purity of isosteviol was obtained with a stevioside conversion of 97.23% from a packet bed reactor without further separation. Within the assayed inorganic acid, organic acids and acidic ionic liquids, the acidic ion-exchange resins provided higher product specificity towards isosteviol. Furthermore, comparing to 5-Fluorouracil, the product presented similar and even stronger inhibition on proliferation of the assayed human cancer cells in a time and dose-dependence by causing cell phase arrest. Isosteviol treatment caused G1 arrest on SGC-7901, HCT-8 and HCT-116 cells, S arrest on HepG2, Huh-7 and HepG3B cells, and G2 arrest on MGC-803 cells, respectively. Reaction coupling separation for isosteviol production catalyzed by acidic ion-exchange resin.


Assuntos
Antineoplásicos , Diterpenos do Tipo Caurano/química , Fase G2/efeitos dos fármacos , Glucosídeos/química , Neoplasias/metabolismo , Pró-Fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Catálise , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/isolamento & purificação , Diterpenos do Tipo Caurano/farmacologia , Células HCT116 , Células Hep G2 , Humanos , Resinas de Troca Iônica , Neoplasias/tratamento farmacológico , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/isolamento & purificação , Pró-Fármacos/farmacologia
19.
Eur J Med Chem ; 209: 112933, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328100

RESUMO

Isocombretastatins are the not isomerizable 1,1-diarylethene isomers of combretastatins. Both families of antimitotics are poorly soluble and new analogs with improved water solubility are needed. The ubiquitous 3,4,5-trimethoxyphenyl ring and most of its replacements contribute to the solubility problem. 39 new compounds belonging to two series of isocombretastatin analogs with 2-chloro-6-methylsulfanyl-4-pyridinyl or 2,6-bis(methylsulfanyl)-4-pyridinyl moieties replacing the 3,4,5-trimethoxyphenyl have been synthesized and their antimitotic activity and aqueous solubility have been studied. We show here that 2-chloro-6-methylsulfanylpyridines are more successful replacements than 2,6-bis(methylsulfanyl)pyridines, giving highly potent tubulin inhibitors and cytotoxic compounds with improved water solubilities. The optimal combination is with indole rings carrying polar substitutions at the three position. The resulting diheteroaryl isocombretastatin analogs showed potent cytotoxic activity against human cancer cell lines caused by tubulin inhibition, as shown by in vitro tubulin polymerization inhibitory assays, cell cycle analysis, and confocal microscopy studies. Cell cycle analysis also showed apoptotic responses following G2/M arrest after treatment. Conformational analysis and docking studies were applied to propose binding modes of the compounds at the colchicine site of tubulin and were in good agreement with the observed SAR. 2-Chloro-6-methylsulfanylpyridines represent a new and successful trimethoxyphenyl ring substitution for the development of improved colchicine site ligands.


Assuntos
Proliferação de Células/efeitos dos fármacos , Piridinas/química , Estilbenos/farmacologia , Divisão Celular/efeitos dos fármacos , Colchicina/metabolismo , Fase G2/efeitos dos fármacos , Humanos , Solubilidade , Estilbenos/química , Tubulina (Proteína)/metabolismo
20.
Cells ; 9(12)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287368

RESUMO

Epithelial to mesenchymal transition (EMT) is associated with resistance during EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy. Here, we investigated whether EMT is associated with acquired resistance to 3rd generation EGFR-TKIs, and we explored the effects of cyclin-dependent kinase 7 (CDK7) inhibitors on EMT-mediated EGFR-TKIs resistance in non-small cell lung cancer (NSCLC). We established 3rd generation EGFR-TKI resistant cell lines (H1975/WR and H1975/OR) via repeated exposure to WZ4002 and osimertinib. The two resistant cell lines showed phenotypic changes to a spindle-cell shape, had a reduction of epithelial marker proteins, an induction of vimentin expression, and enhanced cellular mobility. The EMT-related resistant cells had higher sensitivity to THZ1 than the parental cells, although THZ1 treatment did not inhibit EGFR activity. This phenomenon was also observed in TGF-ß1 induced EMT cell lines. THZ1 treatment induced G2/M cell cycle arrest and apoptosis in all of the cell lines. In addition, THZ1 treatment led to drug-tolerant, EMT-related resistant cells, and these THZ1-tolerant cells partially recovered their sensitivity to 3rd generation EGFR-TKIs. Taken together, EMT was associated with acquired resistance to 3rd generation EGFR-TKIs, and CDK7 inhibitors could potentially be used as a therapeutic strategy to overcome EMT associated EGFR-TKI resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Fase G2/efeitos dos fármacos , Fase G2/genética , Humanos , Neoplasias Pulmonares/genética , Pirimidinas/farmacologia , Fator de Crescimento Transformador beta1/genética , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...